INFORMATION SCIENCES 46, 27-45 (1988) 27

A Dynamic Majority Determination Algorithm
for Reconfiguration of Network Partitions

BHARAT BHARGAVA
and

PETER LEI NG

Department of Computer Sciences, Purdue University, West Lafayette, Indiana 47907

ABSTRACT CF

We present a conservative consistency and recovery cantrol algerithm for replicated files in
the presence of network partitioning due to communication link failures. This algorithm
suppoerts partial replication, provides nonblocking operations by allowing update access to a
file in that file’s majority pa.rtitioh;,;‘_-fd brings all copics up to date on all sites whenever the
communication links among them ake repaired. This algorithm belongs to the class of dynamic
voting algorithms proposed in the recent literature. When the communication link among some
partitions is reestablished, the algorithms proposed so far do not always allow the merge
(reconciliation) of these partitions to form a single partition. A merge condition has 1o be
satisfied to avoid possible inconsistencies. This is undesirable because in a system with more
than one replicated file, two or more partitions cannot be integrated to form a single partition
if any one of the replicated fields in these partitions does not satisfy the merge condition. This
restriction might cause the system to remain partitioned for 2 leng time even if communication
links are repaired. (In the previous papers, such a preblem is not addressed, since a system
with only one replicated file is assumed,) The algorithm proposed in this paper avoids any
such merge condition and integrates the partitions whenever a communication link failure is
repaired, thus providing a higher degree of availability. This work formalizes the prescntation
of algorithms and data structures for ithplementation.

1. INTRODUCTION

1.{. BACKGROUND

A distributed database (DDB) consists of a set of logical data stored at a set
of sites interconnected by a communication network. The granularity of these
logical data can be a record, a relation a file, etc. Without loss of generality, in
the following discussion, we assume the granularity of these data to be a file.

To improve performance, data availability, and reliability, certain logical
files are replicated at more than one site [9,17]. A logical file is fully replicated
if each site in the DDB has a copy of that file. While replication is desirable, it
is impractical to fully replicate every file in a DDB [1}. It is safe to assume that
some of the files are partially replicated. For replicated copies, mutual con-
sistency must be ensured. An update to a physical copy (or copy) of a logical

@Rharat Rharsava

28 BHARAT BHARGAVA AND PETER LEI NG

file (or file) must be posted on all other copies of that file. The copies of a file
are mutually consistent if whenever an update is performed on one of these
copies, any other copy of that file cannot be accessed before it is also updated
correctly, While preserving mutual consistency of a file is a sufficient condition
for the correct access of that file, maintaining such mutual consistency while
allowing updates to that file is difficult in the presence of a network partition.
A network partition occurs when the network is split into several groups of
sites, such that sites in each group can communicate with each other but not
with a site in another group. A partition of a DDB is a maximal subset of
communicating sites in that DDB [16}. Under normal operation, the whole
DDB is itself a single partition. Some researchers have defined a partition of a
DDR at the file level f15]. Under this model, two sites are considered to be in
different partitions if the version numbers of the two copies of a file f stored at
these two sites are different, even if these two sites are physically connected. In
this paper, we consider the partition at the site level rather than at the file level,
for the following reason. By defining a partition at site level, only a simple data
structure, namely, a connection vector (see definition in Section 2), is required
at each site to keep track of the current partition configuration of the network.
A connection vector is not sufficient to represent the current partition config-
uration for all files at a site if the file level definition is used.

When the DDB becomes partitioned, unrestricted updates to the copies of
replicated files can violate the mutual consistencies of these files. Therefore, a
consistency control protocal must he enforced for access when the network is
partitioned. A recovery control protocol is required to reconciliate the DDB after
the network is repaired.

Many algorithms have been proposed to solve these problems, and a survey
is given in [8). They use one of the two approaches: the optimistic approach,
and the conservarive approach. An optimistic algorithm allows updates to occur
freely in any partition. Mutual inconsistencies might be allowed during the
period in which the network is partitioned. When the partitions are merged,
inconsistencies are detected and resofved. Such algorithms are termed optimistic
because it is believed that there will be only a small amount of inconsistency
and it can be resolved inexpensively when merging, The inconsistencies are
usually resolved by rofling back (undoing) some transactions.

A conservative algorithm permits updates to a file to occur in at most one
partition (the majority partition). No other copies of that file in other partitions
are updated. Such algorithms avoid mutual inconsistencies at the expense of
losing availability. The comservative approach has an appealing property that
the recovery protocol is simple because no inconsistent aceess to data can take
place when the system js partitioned. The updates are propagated to the
out-of-date copies. No rollbacks of transactions are needed. The research in this
paper contributes to the conservative approach.

A DYNAMIC MAJORITY DETERMINATION ALGORITHM 29

1.2. DISCUSSION OF THE RESEARCH PROBLEM

The research problem is to find solutions to allow:

(1) read access to the latest copy on all sites,
(2) the determination of a unique majority partition during multiple net-
work partitions and merges in order to allow updates.

We attack the first problem by performing the merge of the copies of the file
without violating the consistency as soon as two sites with different versions of
copies c¢an communicate, The details are given in Section 3. The second
problem is resolved by using the idea (7] of designating majority of the previous
majority as the new majority. Of course, any site can join the majority partition.
The update access is restricted so that only the copies in the majority partition
are allowed to update, It is possible that after multiple partitions, the number of
sites in the majority (of majority) partition may become too small (say below an
unacceptable threshold), A solution suggested in [5] declares a tie among the
sites in the last majority under such conditions. A new majority is established
after a merge occurs involving the sites in the last majority and the sites from
the minority set. Several options can be exercised to determine a unique
majority. For example, if the majority of the sites considered as minority so far
merge with a site(s) of the last majority, a unique majority is established.

We discuss the research problem further in the following paragraphs. In a
conservative algorithm, a group of sites is considered to constitute a partition if
these sites can communicate with each other and all copies of each replicated
file at these sites are consistent. We can distinguish two types of file access:
read-only and update, A replicated file is available for updates in at most one
partition, the file’s majority partition. Update access to that file in other
partitions is blocked. However, read-only access can be allowed in all partitions
using the correctness criterion of view serializability for concurrency control
[4,19].

The availability of a file in a dynamically changing network depends on how
we select the majority partition after the previous one is partitioned. In
conservative algorithms, under some circumstances, a majority partition of a
file may not exist. For example, in the majority consensus algorithm [18], if the
network splits into two equal size partitions, the majority partition is lost. None
of the partition can claim to be a majority.

To improve the availability of a file, two directions can be followed. The first
one is to avoid losing the majority partition. The other one is to keep the size of
the majority partition above a threshold, even if the majority may be tempor-
arily lost in the hope that a larger majority partition might be formed due to
other merges, We present Example 1 to illustrate this point.

30 BHARAT BHAR/AVA AND PETER LEI NG

Fig. 1. Partition history of a file replicated at five sites.

EXAMPLE 1. Consider the partition history of a file represented by the
partition graph [15] in Figure 1. Following the first direction, we might allow
partitions ABC and AB as the majority partition. No loss of majority partition
occurs in this history. But if the network remains in the configuration of AB
and CDE for a long time, the file is not available in the partition CDE, which is
larger in size than the majority partition 4B during this period. The second
direction will lead us to select partitions ABC and then CDE as the majority
partition. In this case, the majority partition is temporarily lost when ABC
breaks into 4B and C. Then C is merged with DE and the majority partition is
reformed.

In Example 1, it seems that the second method is better than the first one.
But if CDE exists for a very short period, then the first method might be better.
Since future behavior of a system is difficult to predict, we cannot say which
method is better. But we do have a choice here, This issue of choice is discussed
further in Section 5.

Different proposals along the first direction have been presented in some
recent papers. In the dynamic vote reassignment scheme [2], each site can have
more than one vote assignment. Access to a file is allowed in the partition with
a majority of votes. To reduce the possibility of losing majority partition, a site
in the current majority partition can just antonomounsly increase the weight of
its votes without requiring consensus of other sites in that partion. But notifica-
tion of such an increase to the others sites within its partition is required.

A DYNAMIC MAJORITY DETERMINATION ALGORITHM 31

In the dynamic voting schemes proposed in [7] and [11), if another partition-
ing occurs in the majority partition of a file, among the resulting partitions, one
containing more than one half of the copies of that file in the previous majority
partition is accepted as the new majority partition of that file. If there is a tie
(the majority partition splits into two partitions, each with one half of the
copies of that file in the previous partition), then a predetermined linear order
to the copies of a file is able to break the tie [11]. Both schemes assume a
connection vector at each site that reflects the current connectivity of the
network. Associated with each copy of a file, a version number X and a version
vector ¥ keep the state information of that copy relative to the other copies in
other partitions. One advantage of these schemes is that the cost of the file
access is low, because the determination of whether or not a site is in a file’s
majority partition can be made by consulting only the local state information X
and V associated with the local copy of that file. No intersite communication is
needed.

The problem with both schemes is that after the communication link among
some partitions is repaired, they cannot always perform the merge (reconcilia-
tion) of these partitions to form a single partition. This is because the merge
leaves the newly formed partition in such a state that the local X’s and ¥’s can
no longer provide the correct state information for the majority determination.
A site can incorrectly determine, by consulting the local X and V of 2 file, that
it is in the majority partition of that file; thus two majority partitions for a file
might exist at the same time. To illustrate this, an example is given in Section 4.
Therefore, in these schemes it is necessary to delay the merge, even though the
communication link is repaired, to avoid possible mutual inconsistency. How-
ever, there may be files that do not cause such an anomaly after merge. If the
merge were performed, they would become accessible at more sites. There
appears to be an undesirable phenomenon that the availability of some files is
reduced by the consistency requirement of others.

Refinement to the above ideas have been proposed in [12, 13]. These
enhancements use simpler data structures. In [12], the connection vector and
version vector are not required as in [7]. Instead, an integer called the wupdate
sites cardinality (SC) is associated with each copy, which reflects the number of
sites participating in the most recent update to that copy. In [13], the connec-
tion vector is not required, and a boolean vector called the update sites vector
(8V) is used instead of the integer version as in [11]. Even though simpler data
structures reduce the maintainence effort, in the determination of whether or
not a site is in a file’s majority partition, both [12] and [13] require an exira
round of message passing to collect the version numbers and SC’s or SV’s from
all other sites with which this site can communicate. Here, we see a tradeoff—
between spending less time to maintain simpler data structures and taking more
message rounds to make the majority decision. However, these refinements still

32 BEHARAT BHARGAVA AND PETER LEI NG

do not allow arbitrary merging of sites. Even if sites are physically connected,
they pretend that such sites are in different partitions. In this paper several of
these problems have been resolved.

We now present the details of our algorithm by presenting the assumptions,
definitions, and data structures in Section 2. The algorithm is presented in
Section 3, Section 4 compares our algorithm with the algorithms proposed
in [7, 11, 12, 13]. Discussion and some possible improvements are given in
Section 5.

2. ASSUMPTIONS, DEFINITIONS AND DATA STRUCTURES

21, ASSUMPTIONS

(1) All sites can detect network partitioning using some mechanism such as
time out. If the network consists of & sites, each site will have a connection
vector of &k elements that reflects the current connectivity of the network . For
example, if the network consists of three sites, s;, s,, &, then the connection
vector at s, with value {1,0,1) denotes that s, is currently connected with s,
but separated from s,. (Note that when we say “A is connected with B,” we
mean that 4 can communicate with B. 4 and B might not be conmected
directly.) The table of all connection vectors in the network is reflexive,
symmetric, and transitive. That is, the relation is-comnected-with is an equiv-
alence relation.

(2) Each site processes messages in a FIFQ order relative to every sending
site, There is no loss of messages between connected sites. All messages from a
site arrive in order as sent by that site. Messages arrive without transmission
&rTor,

(3) The system runs a correct concurrency control protocol [3] that ensures
the serializability of transactions in each partition.

2.2. DATA STRUCTURES

Suppose that a file f is replicated at » sites. We associate a replication
vector S and a linear order vector L with file f and version number X, a
version vector ¥V, and a marker vector M with each copy of the file f.

The replication vector of f, denoted by §= p[s,,5,,...,3,), is a vector of the
names (or identification numbers) of the n sites at which f is replicated. The
linear order vector of f, denoted by L =({,1,,...,1,}, is a vector of n distinct
integers that defines the linear order among the copies of £ at these » sites. The
elements in § and L are position related, that is, /; is the order of the copy at
site s;. For instance, associated with file f in Example 1, one possible pair of

A DYNAMIC MAJORITY DETERMINATION ALGORITHM 33

values of S and L could be $=¢4, B,C) and L = (1,2,3), indicating that the
linear order, associated with f, of these three sites is B> 4> C. When f is
created, § and L are decided, and they will not be altered unless we want to
change the topological distribution of f and/or redefine its linear order. § is
replicated at every site in the system. L is replicated at each site that contains a
copy of f.

‘The wversion number X of a copy is an integer that records the number of
successful updates to that copy. Since all copies of f in a partition are mutually
consistent, the version numbers of all these copies are identical. The current
version number of f is the largest version number of all copies of f.

The version vector of the copy at site 5;, denoted by V= (v, 1,,...,4,),is a
vector of n integers, Because s, is always connected with itself, v, =0. If 5; and
s; are still connected, v, = 0. Note that we are defining the version vector of the
copy at 5,. If 5, and s; are separated, v, will have the value of the version
number X at the time when s; was isolated from s;. Since all copies of f in a
partition are mutually consistent, the version vectors of all these copies are
identical. Again, following Example 1, let the version vector at site have a value
of V= (2,0,0}. This version vector tells that B is currently connected with (i.e.,
in the same partition as) C, and A is isolated from BC, since the version
number X was equal to 2. In this case, the version vector at site C will have the
same value as the V above. The version vector in site 4 will be ¥ = (0,2,2).

The marker vector of a copy, denoted by M = (m,, m,,..., m,}, is a vector
of n booleans. Each element m; has a boolean value of either T (indicating that
the copy at site s; is marked) or F (indicating that the copy at s, is unmarked).

The X, V, and M associated with a copy are stored at the same site as that
copy. Initially, X and all elements in V" are set to 0; all elements in M are set of
F (unmarked).

2.3, MAJORITY PARTITION

A copy is current if it is unmarked and its version number equals the current
version number. Note that a copy will not be considered current if it is marked,
no matter what value its version number has. The majority partition of f is a
partition that either contains the majority of the current copies of f, or contains
exactly one-half of the current copies of f and one of these copies is higher, in
the linear order of f, than all other current copies of f in other partitions.

3. OQUR APPROACH AND THE ALGORITHM

In this section, we present an algorithm that allows arbitrary merges while
mutual consistency is still maintained. The data structures our algorithm

34 BHARAT BHARGAVA AND PETER LEI NG

assumes are a connection vector C at each site, and the five data structures S,
L, X, ¥, and M introduced in last section associated with each copy of a file.

The algorithm consists of four major procedures, ISMAJORITY, PARTITION,
RESOLVE, and MERGE. It enforces the rule that update access to a file is atlowed
only in the majority partition of that file. Procedure 1SMAJORITY determines if a
copy of a file is in the majority partition of that file, consulting only the local

Procedure ISMAJORITY (assume invoked at sile A)

Faput = X + version nurmber of local capy of £,
¥ - version vector of local copy of [,
5 - replication vector of f.
M - marker vector of local copy of £-
L. - linear order vector of .

Quipur: "yes" if A is in the majerily partition of £,
"no” atherwise.

Method: First, computs E, the largest element of V, which is the value of the version number X at the
time when the previous partitioning occurred. If the current X is greater than E, then A is
obvicusly in f's majorily partiion because this copy has been npdated since last partitioning,
sareturn "yes”, Else, it must be the case that X = E. In this case, we need Lo compute Setl, the
set of unmarked sites thal are in the same pantilion as A, and Set2, the sat of unmarked siles
that were most recently separated from A (Note that we consider only unmarked sites when
computing Setl and Set2). [f the size of Setl is greater than that of Set2, then the partition (hat
sile: A is in contains a majority copies of current copies of f; therefore it conslitutes a majority
partition of £, 50 retum "yes”, If both Setl and Set2 have the same size, and CGiere 5 a site in
Setl that is higher in fs linear order than all sites in Set2, then the partion that site A i3 inis
the majorty partition of f, and "ycs" is retumed. In all other cases, the partition is not the
majority pantition of £, and "no” is returned.

function ISMAJORITY (X, V,5.ML) : hoolean ;
begin
E « MAX{V(il| Vile V}
if X >E then return "yes”
eke M X=E*f
begio
Setl - {S[il| VI[i] == 0 and M[i] == F};
Scl2 « {S[i)| ¥[i] ==E and M[i] ==F}:
if| Setl] »| Setd then return "yes"
else if] Se1l} ==| Se1d and
there axisis a site S[i) in Se1l such that S[i] > 3{j] for afl S{j] in Se2
J* by consulling L %/
{hen return "yes"
else return "ng”
f

end

end.

Fig. 2. Definition of procedure ISMAJORITY.

A DYNAMIC MAJORITY DETERMINATION ALGORITHM 35

state information S, L, X, V, and M associated with that copy. The function
of procedures PARTITION, RESOLVE, and MERGE is to modify the local state
information of the files whenever a communication link failure/repair is
detected so that 1ISMAJORITY, when invoked, can use this updated information to
make correct decisions. The procedure PARTITION is invoked whenever a site
detects a partitioning, It changes the version vectors of the local copies to
reflect the occurrence of this partition. Procedure MERGE, which is the heart of
our algerithm, reconciles two or more partitions inte one whenever the com-
munication link between these partitions is repaired. It can be initiated at any
site. It calls procedure RESOLVE to resolve the X'’s, V'’s, and M’s of each file,
propagates the missed updates to each copy, and modifies the marker vectors to
keep the state information consistent,

To access a file f, a site consults the local replication vector S associated
with f to see if f is replicated at that site, If it is not, a remote access has to be
performed. A site that has a copy of f and is currently connected with the local
site (by consulting S and C, the connection vector) is chosen to perform the
access. Any remote access mechanism car be used here. if the local site contains
a copy of f, then ISMAJORITY is invoked to check if this site is in the majority
partition of f. If ISMAJORITY returns yes and the access is a read, the local copy
is fetched. If ISMATORITY returns yes and the access is a write, then all copies of
f in this majority partition are updated (by using a concurrency control

FProcedure PARTITION (assume invoked atsile A)
Input : C - The connection vector.
X1 X 20Xy - version numbers of the & copies of replicated files £ fa,..fi-
V] Va2,V - version vectors of fiJae i
§115210.,5; - replication vectors of fy Sz, fi.
Quiput: V,,V3,...,V) - the new version vegtors of £ fa.fi.
Method: For each Vi, 1 51 = k, for each Vi[jl € Vi, do the following : if 5;Tjl, the site associaled with
Vi(i], is still connected with A, ar is separated from A before this partitioning { value V;[j) =
0), then do nothing; else it must be the case that §;[j] is separated from A due to this
partitioning, 50 we set V;[j] to equal the current value of version number X,

procedure PARTITION(C; X3y Xg,.Xi3 81 82,51 var Vi Vo, Vi)
begin
fori=1tokdo
forj=1to| V| do

i V;(j)==08nd
51l is pr- separated from A (by consulting comnection veclor C)
then V[j] « X;
1]
od
ad
end.

Fig. 3. Definition of procedure PARTITION,

36 BHARAT BHARGAVA AND PETER LEI NG

Procedure RESOLVE {invoked al the site that iniliales the merge)
Input : X1 X3....X, - version numbers to resolve.
V1.V, Wy - version vectors 1o resolve,
M M o.My - marker vector o resalve,
Ouiput: X - the new version number,
V - the new version veclor.
M - the new marker veclor.
Method: The new version number X of P is set to equal the maximum of all X;'s, i = 1,2,... k. The new
version vector V ¢an be construcied as foltows, Far each V(i) € V., do the fellowing ; if Sfil €
P, set V{i] = O otherwise, sel V[i] t2 cqual the maximum of all Vilil's.j= 1,2...% The new
marker vector M is formed by ORing the M;'s componentwise.

procedure RESOLVE(X ;... Xp: Vi, Vi My, My var X Vi MY,
begio
X MAX{X;| i=12..k}
for each ¥[il e ¥ do
Te{ Vj[i]l i=12,..kh f* collection of #th components *f
ifthere existsa ve Tsuchthatv =0 #* site Sl is in partiton P %/
ther V[i] < Oy
else V[i] «— MAX{v] ve T}
i1
od
for each M[i] € Mdo
Mi] ¢ OR { M;[i] j=12..%}
od

end.

Fig. 4. Definition of procedure RESOLVE.

protocol). When a copy of a file is updated, its version number X is incre-
mented by 1. If ISMAJORITY returns no, the update access is rejected. However,
the read-only accesses are allowed to proceed on all sites. Procedure 1SMAJORITY
is given in Figure 2,

When a site detects a network partitioning, it calls procedure PARTITION to
modify the version vectors of those local copies of replicated files that are
affected by this partitioning. Suppose k files £, f,,..., f. are replicated at this
site (without loss of generality, call it site 4). Figure 3 gives the definition of
procedure PARTITION.,

When we merge two or more partitions into a single partition, we need to
resolve and update the version numbers, the version vectors, and the marker
vectors of these copies. Assume k partitions P,, P,,..., P, are to be merged to
form a new partition P. The version number, the version vector, and the marker
vector of F, are X, Vj, and M,, respectively. Procedure RESOLVE is defined in
Figure 4. The Example 2 illustrates how procedure RESOLVE works.

EXAMPLE 2. Consider a file f with S= (4, B,C, D). Suppose we want to
merge partition 48 and partition C to form a new partition ABC, and the
version vectors of f in these two partitions at this point are (0,0,8,10) and

T

A DYNAMIC MAJORITY DETERMINATION ALGORITHM 37

(8,8,0,8), respectively. Resolving these two version vectors gives a new version
vector V= (0,0,0,10). Sites A4, B, and C are in the new partition ABC. So
their corresponding values in V are 0. Site D is not in partition 4BC; therefore
its value in V is set to equal 10, the maximum of 10 and 8.

In addition to resolving the X’s, ¥'’s, and M’s when merging two or more
partitions, we should make all copies of each file f in these partitions identical

Procedure MERGE (invoked ar the sile that initiates a merge)

Input; Py Py, P, - partitions 1o be merged (each P; is a set of site names).

Ouipur: P - a panition which is the merger of Py P5.... Py,

Method ;For cach replicated file £, do the following: first, request a site in each partition ; ta send the
X;, V. and M; of its copy of f. After having received all these X,'s, V;'s, and M;"s, invoke
RESOLVE to resolve them, Next, make all copies in P identical to version X. If P is now the
majority partition, then uamark 2fl copies in P. If P is not the majority pantition, mark those
copies in P thal had a version number less than the new version number X. Last, broadcast the
new X, ¥, and M 10 alf the sites in P that have a copy of f;

prooedure ‘l\"[.ERGE(Pl,Pg,...,Pk)
begin
for each replicated file £ do
for i+ 1 tok do
if there is a sits s € P; that containg a copy of f
then request s to send the X, ¥, and M of that copy;
receive and store them in X7, V;, and M;
else Nosile in £; has a copy of f. Give X,,V, M, dummy values %/
X; « 0 V; « <00....00; M; « <FF,..F>
fi
od;
RESOLVE(X | X2, X0, V1 ViV Mssub LM 3 M, X, Y, M);
make all copies of £ in P consistent with version X;
E & MAX{v| ve VY;/* latest version in cther partitions when separated from P */
Serl « {5[i]] V[i] == 0 and M(i) = F and version number of f at 8{ij == E};
5e12 « {S[i]| V(i]l = E and M[i] =F};
if one of the k partitions Pssub1.P;.....P, is the majarity partition of f or
j Setl| »| Serd or {| Setl] ==! Set} and
there cxists a site S(i) in Setl such thal S[i} > S[j] for all 8{§] in Se12)

then {* the new P is the majority pariition of %/
for each Vil € ¥ where V[ii=0do
MIi] « F; /* unmark the copy at S[i] */
od

else /P isnot the majority partition. Mark off those non-current copies */
for each ¥[i} ¢ Vdo
if V[i] == 0 and version number of fat 8[i] < X
then M[i] « T;
fi
od
fi
braadeast X, V, and M 10 each site in P that has a copy of £
od;

end,

Fig. 5. Definition of procedure MERGE.

38 BHARAT BHARGAVA AND PETER LEI NG

to the latest version of f in these partitions (some ideas on how to perform this
task are discussed in [4]). If the resulting partition is not the majority partition
of f, we mark those copies that had a version number less than the resolved
version number so that they will not be counted as cuirent copies when
invoking 1SMAJORITY. If the resulting partition is 2 new majority partition of f,
we unmark all copies of f in this partition because they are now current.
Finally, the old X, the old ¥'’s, and the old M ’s of these copies are replaced
by the resolved and modified new values. Procedure MERGE in Figure 5
performs all merge operations mentioned above.
We now present Example 3 te show how our algerithm works.

EXAMPLE 3. In this example, we trace the partition history of file f depicted
in Figure 1. Assume the linear order of f is such that B> 4> C (let S=
(4, B,C) and L=(2,3,1}). Suppose that after f is created, two updates are
successfully performed on f. The eurrent state of f is as follows:

A,B,C
X=2

v =(0,0,0
M= (F,F,F)

Since all copies in a partition have the same version number and the same
version vector, in order to simplify the notation, we have listed only one X, one
¥V, and one M for all copies of f in a partition. Suppose at this instance, a
petwork partitioning separates 4 from B and C. After all three sites execute
the procedure PARTITION, we have the following state:

A B,C
X=2 X=2
V=(0,2,2 V=(2,0,0)

M= (F,F,F) M= (F,F,F)

At this moment, if site A invokes ISMAJORITY, then Setl will be set to { A}
and Set2 will be set {B,C}. If B or C invokes ISMAJORITY, it will find that
Setl = {B,C} and Set2 = { A}. Thus partition BC constitutes a majority parti-
tion of f. Assnme three more updates are performed on f before B is isolated
from C. We have the following state:

A B C
X=2 X=5 X=5
V={0,2,2) V=(2,0,5) V=1(2,50)

M= (F,F,F) M= (F,F,F) M= (F,F,F)

A DYNAMIC MAJORITY DETERMINATION ALGORITHM 39

Both partition B and partition C contain one-half of the current copies
(|Setl| =|Set2| =1 if MATORITY is invoked by B or C). Since we assume B > C
in the linear order of f, partition B is now the majority partition. Here note
that the majority partition of a file does not have to contain a majority of
copies of that file,

Now suppose that f is updated three more times, and then partition 4 and
partition C are merged into a single partition AC. We have the following
situation:

A,C B
X=5 X=3
V= (0,50 V=(2,0,)

M={(T,E,F) M= (F,F,F)

Note that A’s marker in partition AC has been changed to T (marked), If 4
or C later invokes ISMAJORITY, it will find that Setl = {C} and Set2 = { B}.
Site A will not be included in Setl, because it is marked. Since B > C, partition
AC is not the majority partition of f. Also note that the copy at site 4 has been
updated from version 2 to version 5. But AC is not the majority partition of f.
So why should we update this copy? We give our reason for doing such an
update, based on the notion of view serializability (4], for increasing the
availability for read access. The correctness criterion based on view serializabil-
ity requires the following conditions:

(1) The updates do not create a cycle in the conflict graph [14].
(2) The read-only accesses considered one at a time in the conflict graph do
not create a cycle.

Consider the transaction processing in a bank. There are many user transac-
tions that would just like to read the database values, In other words, the users
want to get a view of a correct database state. When the network is partitioned,
even if the most up-to-date view is not available, an earlier version may be
acceptable. For example, if one calls a bank to find the balance in one’s
account, the following answer may be acceptable: your balance is this amount;
however, some checks may not have been processed. The cause of unprocessed
checks may be the relays due to a failure of some part of the system or network
partition, Of course, when one actually goes to withdraw the funds, the
transaction becomes an update and could be rejected. Therefore, it is better to
keep the balance as up to date as possible by performing the update mentioned
above. As discussed in [4), the availability during network partitions can be
increased using the correctness criterion called view serializability for concur-
rency control, where read-cnly transactions are treated differently than the
update transactions.

40 BHARAT BHARGAVA AND PETER LEI NG

4. COMPARISON WITH PREVIOUS ALGORITHMS

We have presented an algorithi that provides a higher degree of availability
than the algorithms propesed in [7, 11, 12, 13]. The major difference between
our algorithm and the previous ideas is that our algorithm supports partiat
replication (by introducing the replication vector) and merges the partitions as
soon as the communication link among them is repaired (by introducing the
marker vector M). The four previous algorithms do not always allow the
merging of an arbitrary subset of the partitions in the system. To see what
might happen if arbitrary merges are allowed in their algorithms (also see
examples given in [7, 11, 12, 13]), let's consider once again the last partition
state of Example 3. The marker vector is absent in their algorithms:

4,C B
X=5 X=3
V=(0,5,0) V=(2,0,5)

Both 4 and C can determine that they belong to the majority partition (since
Setl={A4,C} and Set2={B}). So can B (since X> E). Thus two majority
partitions exist for the same file at the same time. Therefore, in this case, their
algorithms simply do not allow partition A to merge with partition C to avoid
such inconsistency.

If f is the only replicated file in the DDB, this restriction might be
acceptable, because even if we allow partition 4 and partition C to merge, the
new partition should not be allowed to update f anyway. As far as availability
is concerned, we lose nothing. But availability will be lost if the DDB contains
more than one replicated file. Let’s suppose that another file g is also replicated
at these three sites, but site C is higher than site B in g’s linear order. Partition
C will be the majority partition of g befere the merge is attempted. if partition
A is allowed to merge with partition C, g will be accessible again at site 4.
Since f does not allow partition 4 and partition C to merge, we see that the
availability of g is affected by the existence of f.

When we consider a DDB with many replicated files, such a restriction
might become quite severe and unacceptable, as Example 4 illustrates.

EXAMPLE 4. Suppose that four files f,, fy. fc, and f; are replicated at four
sites A, B, C, and D. The linear order of file f,, where i = 4, B,C, or D, is such
that site / has the highest order. Consider the partition history in Figure 6. (All
four files have the same partition graph in this case.) Each current partition is
the majority partition of one of the files. Out of 11 possible merge combina-
tions, only three are allowed. They are: 4 merges with B; and C merges with

A DYNAMIC MAJORITY DETERMINATION ALGORITHM 41

ABCD

Fig. 6. Partition graph of file f;, i = 4, B,C, or D.

D; or A, B, C, and D merge at one step. Any other atiempt will fail, Note that
the procedures for any updates performed after various partitions are similar to
those in Example 3.

By using the marker vector M to distinguish the current copies, our al-
gorithm is able to perform arbitrary merges while still maintaining mutual
consistency, thus providing a higher degree of availability than the previous
four algorithins. Another drawback of [12, 13] is that they do not allow a site to
update its copy if this site does not belong to that file’s majority partition. This
restriction makes the alternative (allowing read-only accesses in nonmajority
partition, mentioned at the end of the last section) less appealing,

3. DISCUSSION

In our algorithm and the previous four algorithms, high availability is
achieved by avoiding the loss of the majority partition. However, in some cases,
the loss of the majority partition is unavoidable. We say that a partitioning is
simple if it splits a partition into exactly two partitions, Otherwise, it is called
multiple. A multiple partitioning might cause a file to be inaccessible every-
where, as the partition graph in Figure 7 illustrates. In the class of dynamic
voting algorithms, no solution exists for such a problem, since when a site is
isolated from the other two sites, it has no way to determine if the other two
sites are still connected, must be made. No partition will claim itself the
majority partition.

42 BHARAT BHARGAVA AND PETER LEI NG

Fig, 7. A multiple partitioning that causes f to be inaccessible.

Figure 8 gives another example which shows that the loss of the majority
partition might be caused by two consecutive simple partitionings if file / is not
updated during the period between the two partitionings. Note that if f is
rarely updated, it might become inaccessible everywhere even if the second
partitioning occurs long after the first one. We modify procedure PARTITION as
foliows to avoid such loss of majority partition.

In procedure PARTITION, after the version vector ¥ for each file f; is
updated, a call to ISMAJORITY is immediately made to check if this site is in f’s
majority partition. If it is, version number X, is incremented by 1. A disad-
vantage of this scheme is that additional dummy updates might result. How-
ever, another flag can be used to indicate such an increase in version number
and avoid dummy updates. With this modification, our algorithm guarantees
that there is always exactly one majority partition for each file at any given time
if simple partitioning is the only type of partitioning in the system.

Fig. 8. Two simple partitionings that cause / to be inaccessible.

A DYNAMIC MAJORITY DETERMINATION ALGORITHM 43

The reader might notice that, in our algorithm, if the majority partition is
lost (due to the occurrence of a multiple partitioning), the only way to
reconstruct it back is by merging the sites from the latest majority partition,
that is, the one before the majority partition is lost. Merges of other sites are
allowed, but cannot result in a new majority partition. In (5] we have suggested
an alternative to allow the reconstruction of the majority partition as quickly as
possible, using the notions of tie and threshold.

We have tried to achieve high availability by avoiding the loss of the
majority partition. As mentioned in the introduction, high availability can also
be achieved by following the second direction, that is, to keep the size of the
majority partition above a threshold to prevent the majority partition from
getting too small (such an idea is examined in depth in [5]). To see which
method provides a higher availability than the other for a given partition
history, we need to give the availability of a file a quantitative definition.
Assume that a file f is replicated at n sites, and each copy of f has the same
weight, that is, the probability of each copy of f being accessed is equally
likely. We define the availability of /, denoted by 4, as

Y (length of time during which f is available at site ;)
4 = iml
'

n X duration of the history

As an example, for the history in Figure 1, assuming the history starts at
time 0, the first partitioning (ABCDE breaks into ABC and DE) occurs at
time 2, the second partitioning (ABC breaks into AE and C) occurs at time 3,
the first merging occurs at time 4, and the second merging (AB merges with
CDE) occurs at time 20. If the first methed (4BC and AB are majority) is
used, the availability of f will be

i = 20 (for 4) +20 (for B) +3 (for €) +2 (for D) +2 (for E) _ 47
s 570 100 -

Similarly, the availability for second method (ABC and CDE are majority)
will be

A2—3+3+19+18+18 61

£ 5%20 100

Therefore, the second method gives a higher availability than the first one for

44 BHARAT BHARGAVA AND PETER LEI NG

this specific history. But if the first merging occurs at time 19 instead of at time

4,

the availability of method 1 will still be the same, while the availability of

method 2 will be

po3t3tar3es 16
A T U1 A

The first method works better in this case,

We are investigating a design of an efficient scheme that can adapt to a

changing environment {e.g. configuration of the network) by selecting ap-
propriate algorithms to allow high availability. Experiments on the RAID system
{6] are attempting to answer the performance and feasibility questions.

REFERENCES

1. D, Barbara ard H. Garcia-Molina, How Expensive is Data Replication: An Example, TR

286, Dept. of Electrical Engineering and Computer Science, Princeton Univ., Fune 1981.

2. D. Barbara, H. Garcia-Molina, and A. Spauster, Protocols for Dynamic Vote Reassign-

ment, TR 037-86, Computer Science Dept., Princeton Univ., May 1986.
. P. A. Bernstein and N. Goodman, Concurzency control in distributed database systems,
ACM Comput, Swueys 13(2):185-221 {June 1981),

4. B. Bhargava, Transaction processing and consistency control of replicated copies during

10

11.

12

13.

failures, J. Management Inform. Systems, Qct. 1987.

. B. Bhargava, Tie Declaration and a New Majority Establishment during Network Recon-
figuration, working paper, Computer Science Dept., Purdue Univ., May 1987,

. B. Bhargava, J. Reidl, and A. Royappa, The RaID Distributed Database System, TR 691,
Computer Science Dept., Purdue Univ., Aug. 1987.

. D. Daveev and W. Burkhard, Consistency and recovery control for replicated files, in
Proceedings of the 10th ACM Symposium on Operating Systems Principles, Orcas Island,
Wash., Dec. 1985, pp. 87-96.

. S. B. Davidson, H. Garcia-Molina, and D. Skeen, Consistency in partitioned networks,
ACM Comput. Surveys 17(3)341-370 (Sept. 1983).

. C. Ellis, A robust algorithm for updating duplicated databases, in Proceedings of the

Second Berkeley Workshap on Distributed Management of Data and Computer Networks,

Berkeley, Calif., May 1977, pp. 145-158.

H. Garcia-Molina, Performance of Update Algorithm for Replicated Data in a Distributed

Database, Ph.D, Dissertation, Stanford Univ,, 1979.

S. Jajodia, Managing replicated fites in partitioned distdbuted database systems, presented

at Third IEEE Conference on Data Engineering, Los Angeles, Feb. 1987,

S. Jajodia and D. Mutchler, Dynamic voting, presented at ACM SIGMOD-87, San

Francisco, May 1987.

8. Jajodia, and D. Muitchler, Enheacements to the voting algorithm, in VLDB, Brighton,

UK., Sept. 1987, to appear.

A DYNAMIC MAJORITY DETERMINATION ALGORITHM 45

14.

15,

16.

17.

18

19,

C. H. Papadimitriou, The serializability of concurrent database updates, J. Assec. Com-
put. Mach. (4):631-653 (Oc1. 1979).

D». Parker et al., Detection of mutual inconsistencics in distributed systems, JEEE Trans,
Software Engrg. SE-9(3):240-247 (May 1983).

1. A. Stankovic, K. Ramamritham, and W. H. Kohler, A review of current research and
critical issues in distributed system software, in Concurrency and Reliability in Distributed
Systems (B. Bhargava, Ed.), Van Nostrand Reinhold, 1987,

M. Stonebraker, Concurrency control and consistercy of multiple copies of data in
distributed INGRES, TEEE Trans. Software Engrg. SE-5(3):180-194 (May 1979).

R. Thomas, A majority consensus approach to concurrency control, ACM Trans. Data-
base Systems 4(2):180-209 (1979).

M. Yannakakis, Serializebility by locking, J. Assoc. Comput. Mach. 31:227-244 (Apr.
1978).

Received 10 September 1987

